技术文章
Technical articles高功率光纤激光器在先进制造领域、大科学装置等方面均有广阔的应用前景。有源光纤是高功率光纤激光器的“心脏”,是影响激光输出功率水平和光束质量的核心因素。常规有源光纤结构简单,但在功率提升过程中遇到的非线性效应和模式不稳定效应等问题难以有效解决。新型有源光纤能够灵活调控光纤的模场,有望从光纤结构层面解决这些问题,促进高功率光纤激光器实现更高功率、更优光束质量的输出。在对新型有源光纤进行优化设计时,传统方案通常需要借助有限差分、有限元等方法重复求解麦克斯韦方程组,以评估不同结构参数...
一、背景介绍以“大脑”为代表的神经系统是生物体最复杂、精密的器官和系统,是人类历经千万年持续自然进化和筛选而获得的高效率、低功耗的“处理器+存储器”,这无疑是人工智能模仿的最佳模型。对大脑的研究已成为二十一世纪的重要科学问题之一,但人类对于大脑的认知还处于初步探索阶段,认识大脑并与之进行交互已成为脑研究的重要目的,使用仪器和设备对包括大脑在内的神经系统的活动情况进行调节和记录是研究中的一个关键任务。在过去的几十年内,人们已陆续开发出许多有效的方案来执行这一任务,例如光遗传方法...
一、引言高强度飞秒激光在介质中传输时,在多种非线性效应的共同作用下,可以克服衍射极限进行自引导传输,并产生等离子体通道。这一现象被称为飞秒激光成丝。凭借钳制光强高、传输距离远、可在复杂大气环境中穿行的优势,飞秒激光成丝在远程大气污染监测方面展现出巨大的优势。光丝激光雷达技术可以实现大气多物态、多组分同步监测,包括对金属、盐气溶胶、气体、液体、生物成分等的监测,有望弥补传统大气污染探测激光雷达的不足。面向大气污染远程探测的应用需求,提高探测信号的强度及信噪比对光丝激光雷达技术发...
长久以来,物理学家和化学家都梦想着可以从实验中对分子轨道进行成像研究,从而直接探索原子、分子或新型纳米结构的电学、光学和化学特性。在分子体系中,最高占据分子轨道(HOMO)和未占据分子轨道(LUMO)统称为“前线轨道”,它们决定着分子的电子得失和转移能力,进而决定分子间反应的空间取向等重要性质。确定分子轨道特性主要有飞秒激光光谱学和扫描探针显微镜等方法,这些方法引起了研究人员的广泛兴趣,但有局限性。例如,基于超短激光脉冲驱动的分子高次谐波辐射只限于研究简单的气体分子,基于扫描...
算力、算法和数据:人工智能发展的“三驾马车”以深度学习为核心的人工智能正在推动人类社会向着智能时代不断迈进,而算力、算法和数据则是驱动人工智能发展的“三驾马车”。其中,因芯片制程不断逼近其物理极限,传统电子计算的算力供给能力与人工智能催生出的巨大算力缺口之间的失配越来越大,这意味着我们亟需寻找新的算力增长点以满足智能时代的海量算力需求。由于深度学习中80%以上的计算都是矩阵-矩阵乘加运算[1],而矩阵计算在传统冯·诺伊曼型计算系统中运行会产生庞大的数据访存需求,这将导致计算能...
一、引言高强度飞秒激光在介质中传输时,在多种非线性效应的共同作用下,可以克服衍射极限进行自引导传输,并产生等离子体通道。这一现象被称为飞秒激光成丝。凭借钳制光强高、传输距离远、可在复杂大气环境中穿行的优势,飞秒激光成丝在远程大气污染监测方面展现出巨大的优势。光丝激光雷达技术可以实现大气多物态、多组分同步监测,包括对金属、盐气溶胶、气体、液体、生物成分等的监测,有望弥补传统大气污染探测激光雷达的不足。面向大气污染远程探测的应用需求,提高探测信号的强度及信噪比对光丝激光雷达技术发...
如何获得高质量、高精度的激光是激光技术基础研究和应用研究中广受关注的课题,而人工智能算法正是实现激光光束质量预测和调控的有效手段。针对现有简单仿真模型对复杂光学系统预测能力不足的问题,哈尔滨工业大学刘国栋团队将深度神经网络与Frantz-Nodvik方程相结合,提出了一种优于传统拟合方法的大功率ICF激光系统中主放大器输出能量预测新方法(图1)。国防科技大学周朴团队不仅利用深度学习技术实现了少模光纤激光器光束传播因子M2的准确预测,还通过深度学习网络补偿和优化算法消除了高功率...
研究背景高功率飞秒激光在太赫兹产生、阿秒脉冲产生和光学频率梳等科研领域和工业领域有着重大应用价值。基于传统块状增益介质的锁模激光器在高功率下受到热透镜效应的限制,目前输出的最大功率在20W左右。薄片激光器利用多通泵浦结构,将泵浦光多次反射至厚度为百微米量级的片状增益介质上,以实现高效率的泵浦吸收。极薄的增益介质结合背向冷却技术,大大减小了热透镜效应与非线性效应的影响,可实现更高功率的飞秒脉冲输出。结合克尔透镜锁模技术的薄片振荡器,是目前获取脉冲宽度为百飞秒量级的高平均功率激光...